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Abstract

Deep machine learning potentially holds the key to unlocking the door to modern applied
computational intelligence. Presently, it is becoming progressively possible to process great
amounts of data whether static or arriving in streams of varying velocities using deep learning
models. Applications are innumerably many ranging from time series data modeling, signal
processing, image analysis, natural language processing to object recognition among others.
The critical area of predictive data modeling requires efficient and carefully selected algorithms
and models for effective and accurate predictions. In this paper, we present a novel deep machine
learning Neural Network for predictive tasks based on a fixed size window of time steps, tested
on a well-known dataset on customer arrivals to an airline. At the core of the architecture is a
Multi-Layer Perceptron - a classical deep learning Neural Network optimized on a number of
dimensions that include the training algorithm, batch size, number of iterations, and the loss
function among others. We present experimental results and conclude that, upon tuning and
optimization, classical deep learning neural networks such as the Multi -Layer Perceptron
(MLP) have comparable predictive abilities compared to advanced neural networks such as the

Recurrent Neural Networks (RNN) and Convolution Neural Network (CNN).

Keywords: Deep Learning, Predictive Sequence Modeling, Time Series Data Analysis,

Multi-Layer Perceptron, Deep Learning Optimization, Fixed Window Method
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The sub-field of Deep Machine Learning (DML) in the larger field of Artificial
Intelligence (AI) undoubtedly holds the key to solving some of the classical
computational problems in natural language understanding, image analysis, signal
processing, computer vision, navigation; tasks that traditionally have been considered
difficult. It has been made progressively possible to train larger and larger computational
models within short times, with ease and using minimal computational resources of

memory and bandwidth (Bengio, 2012).

Rooted in computational statistics and relying heavily on the efficiency of numerical
algorithms and Deep Neural Networks (DNNs), DML techniques capitalize on the
world's increasingly powerful computing platforms and the availability of datasets of
immense size to analyze and give solutions to problems where recommendation

approaches fail (Schmidhuber, 2015; LeCun, et al, 2015).

DML is primarily an optimization procedure which, in this context, involves numerical
computation of parameters for a system designed to make optimal decisions based on
yet unseen data by choosing parameters that exhibit the best values with respect to a
given learning problem. (Bergstra and Bengio Y. 2012, Bottou, et el, 2017
Vankadara,2015)

Typically, these tasks are characterized by large amounts of training data, high
dimensionality, ill-conditioning that require extensively many cycles of computing

power (Chaudhuri & Ghosh, 2016).

Literature Review
Most work using ANN to manipulate Time-Series data focus on modeling and
forecasting. This section reports on a selected number especially in regression modeling

of time series data to rightfully place this work in context.
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(a) Regression with Time Steps

Some sequence problems may have a varied number of time steps per sample. For
example, we may have measurements of a physical machine leading up to a point of
failure or a point of surge (Venkatraman, 2017; Patel, Chaudhary & Garg, 2016). Each
incident would be a sample and the observations that lead up to the event would be the

time steps, while the variables observed would be the features (Gamboa John. 2017).

Time steps provide one way to phrase time series problems. Instead of phrasing the
past observations as separate input features, we can use them as time steps of the one
input feature. This technique is especially required by most stateful Neural Networks
such as the Recurrent Neural Network (CNN), the Long Short Term Memory (LSTM)
and the Gated Recurrent Unit (GRU) (Olof M., 2016).

(b) Regression with Memory between Batches

The stateful networks have memory, giving them ability to remember across long
sequences. Typically, the state within the network is reset after each training batch
when fitting the model, as well as during prediction and evaluation. This means that the
network can build state over the entire training sequence and even maintain that state
if needed to make predictions providing us with finer control over the internal state

(Talagala, Hyndman & Athanasopoulos, 2018).

One of the requirements for this approach is that the training data should not be
shuffled when fitting the network. It also requires explicit resetting of the network state
after each exposure to the training data (epoch). Finally, when the network layer is
constructed, the stateful parameter must be set true and instead of specifying the input
dimensions, we must hard code the number of samples in a batch, number of time steps
in a sample and number of features in a time step by setting the batch input shape

parameter (Bao, et el, 2017).
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(c) Window Method
In the window method, a time series problem is framed so that a selected number of
recent time steps are used to make the prediction for the next time step. In this case the

size of the window is a parameter that is often tuned for each problem (Busseti, Osband

& Wong, 2012; Bontempi, 2013).

For instance, given the current time (t) we may desire to predict the value at the next time
in the sequence i.e. (t + 1), by relying on the current time (t) as well as a selected number
previous time steps, say (t-1, t-2, ...,t-N) for an N-size window. Phrased as a regression
problem the input variables would be t-N,.., t-2, t-1, t and the output variable would be
t+1. (Chaudhuri, Ghosh, 2016).

(d) Optimization for Regression Modeling

Optimization problems in machine learning arise through the definition of prediction
and loss of functions that appear in measures of expected and empirical risk that one
aims to minimize. There are two varieties of optimization problems that arise in machine
learning: the first involves convex optimization problems, derived from use of logistic
regression or support vector machines, while the second typically involves highly
complex and problems with non-convex error functions, derived from use of deep neural
networks. Deep Neural Networks are trained using the Back propagation especially the
Back Propagation Through Time (BPTT) which is numerically formulated as a highly
non-convex optimization problem in a very high dimensional feature space. Algorithm

(Ngiam; Coates, Lahiri-Prochnow, Le Q., & Ng; 2011, Bottou, Curtis, & Nocedal, 2017) .

However, the training process requires extreme skill and care. For instance, it is crucial
to initialize the optimization process with a good starting point through parameter

tuning and to monitor its progress while correcting conditioning issues as they appear
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(Bergstra. & Bengio, 2012). A great deal of these successes lie in the choice, regularization

of the training algorithm as well as the domain of application.

Unfortunately, attempts to optimize these models such as increasing model size and
training data - which is necessary for good prediction accuracy on complex tasks,
requires significant amount of computing cycles proportional to the product of model
size and training data volume. Due to the computational requirements of deep learning
almost all deep models are trained on Graphic Processing Units (GPUs) (Nikhil; et el,
2016). According to Schmidhuber, (2015), the tremendous success of Deep Neural
Networks (DNNSs), in a wide range of practically relevant applications has triggered a
race to build larger and larger DNNs (Simonyan & Zisserman, 2014), which need to be
trained with more and more data, to solve learning problems in fast extending fields of

applications.

Optimization methods for machine learning fall into two broad categories namely First

Order (15t Order) and Second Order (21d Order). Of the 15t Order methods, the
stochastic and batch techniques are key. The prototypical stochastic optimization
method is the Stochastic Gradient Method (SGD) where the target value is chosen
randomly from a set of target values [1..N] in a positive step-size (Parker, 2012; Lee, et
el, 2011; Josh, et al. 2016). Each iteration of this method is thus very cheap, involving
only the computation of the gradient corresponding to one sample. Similarly, due to
the sum structure of the empirical risk, a batch method can easily benefit from
parallelization since the bulk of the computation lies in evaluations of empirical risk
and its gradient. Further, calculations of these quantities can even be done in a

distributed manner.

Use of the Multi-Layer Perceptron
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The experiments were conducted using a fully connected Multi Layer Percentron (MLP)
of three (3) input layers optimized using dropout at each layer’s input to improve the
generalization capability and its potential non- linearity addressed by the rectified linear
activation unit (ReLU). The latter has the effect of preventing saturation of the gradient
when the network becomes very deep. (Raudys, Mockus, 1999) The last layer of the

network uses a softmax function whose basic layer block is formalized as

x"=fdropout.p(x)
y =W.X'+b
h = ReLU(y)

ReLU helps to stack the networks deeper and dropout largely prevent the co-adaption of
the neurons to help the model generalize well especially on some small datasets.
However, if the network is too deep, most neuron will hibernate as the ReLU totally halve
the negative part. The dropout rates at the input layer, hidden layers and the softmax

layer were varied as {0.1, 0.2, 0.3}, respectively as seen in figure 1 below
0.1 0.2 E] 02 _ ]
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Experiment & Results

Input

In this section we present the experimental setup that includes the problem definition,

the dataset, the DML platform of choice, the results as well as their comparative analysis.

(a) Problem Definition
The DML problem selected for this study is a typical regression scenario of time series

data representing the number of airline passengers arriving at an international airport.
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This is a prediction problem where given a year and a month, the task is to predict the
number of international airline passengers in units of 1,000 collected over a period of

144 months.

The time series prediction is phrased as a regression problem where given the number
of passengers (in units of thousands) this month, last month and previous months, what

is the number of passengers next month.

The initial pre-processing step is to convert the given dataset into the required window
of several months in the past. For purposes of the experiment, a window of three (3)
months was selected as it was found to optimize the results. In this regard, the first
column contains two months” (t-3) passenger count before the current month.
Subsequently, t-2, t-1 and t represent the remaining window period up to the present

month. The next month’s (t+1) passenger count, is the target prediction.

(b) Dataset
The dataset is available for free from the Data Market webpage as a .CSV

downloadable file with the filename “international-airline-passengers.csv”.

(c) Deep Learning Platform
the selected development platform consisted of a set of Python DML libraries and
frameworks available for the experiment under the permissive MIT license namely:
Keras and Tensor flow. Tensor flow is one of the two numerical backend platforms in

Python that provide the basis for Deep Learning research and development.

Keras runs on Python 2.7 or 3.5 and can seamlessly execute on GPUs and CPUs based on
available hardware the underlying frameworks.

Experiment
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The time series problem was phrased as a regression problem with a window size of three
(3) recent time steps that were used to make the prediction for the next time step given
the current time step. In this case the input variables are t-3, t-2, t-1, t and the output

variable is t+1.

The code below was used import all of the functions and classes used to model this
problem in the Science Python (SciPy) environment within the Keras deep learning
library.

# Multilayer Perceptron to Predict International Airline Passengers (t+1, given t, t-

1, t-2)

import numpy

import matplotlib.pyplot as plt import matplotlib.pyplot as pltl

import matplotlib.pyplot as plt2 import matplotlib.pyplot as plt4

import pandas

import math

from keras.models import Sequential

from keras.layers import Dense #Default MLP Neural Network
With time series data, the sequence of values is important. The method that was used for
purposes of stratified cross validation was to split the ordered dataset into train and test
datasets. This was necessary in order get an idea of the skill of the model on new unseen
data. The code below was used to calculate the index of the split point and separates the
data into the training dataset with two thirds (2/3) or roughly 67% of the available
observations used to train the model, leaving the remaining a third (1/3) or roughly 33%
for testing the model.

# split into train and test sets size_Train = int(len(dataset) * 0.67)

size_Test = len(dataset) - size_Train

train_Set, test_Set = dataset[0:size_Train,:],

dataset[size_Train:len(dataset),:]
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Next a function to create a new dataset was defined in accordance with the window
size as described above. The function takes two arguments, the dataset which is a
Python Number array that we want to convert into a dataset and the look back which
is the number of previous time steps to use as input variables to predict the next time
period.
This has the role to create a dataset where X is the number of passengers at a given
time (t) and Y is the number of passengers at the next time (t + 1). The value of the look

back argument was set to three (3) to conform to the selected window size.

A sample of the dataset with this formulation looks as follows:
# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1): inputX, OutputY = [], []
for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0]
inputX.append(a) OutputY.append(dataset[i + look_back, 0])
return numpy.array(inputX), numpy.array(OutputY)

This function was applied to reshape the datasets by overriding the default look back

value with the window size as below.

# reshape dataset
look_back =3
trainX, trainY = create_dataset(train_Set, look_back)

testX, testY = create_dataset(test_Set, look_back)

The effect of this function on the first few rows of the dataset are seen in table 1 below.

Table 1: Reshaped Dataset

S/N|X3 | X2 |X1 |X Y
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1 112 | 118 | 132 | 129 | 121
2 118 | 132 | 129 | 121 | 135
3 132 | 129 | 121 | 135 | 148
4 129 | 121 | 135 | 148 | 148

Source: (Authors)

Comparing these first 4 rows to the original dataset sample listed in the previous section,

the X=t and Y=t+1 pattern in the numbers is clearly visible.

The parameters that were found to optimize the network capacity are a hidden layer of

14 neurons, a second hidden layer of 8 neurons, 1 output layer of neurons, 300 epochs, a

batch size of size 2.

# create and fit Multilayer Perceptron model

model = Sequential()
model.add(Dense(8, input_dim=look_back, activation="relu'))

model.add(Dense(1)) model.compile(loss='mean_squared_error',

optimizer='adam')

model.fit(trainX, trainY, epochs=300, batch_size=2, verbose=2)

Once the model is fitted, the subsequent activity is to estimate its performance on the

train and test datasets. The role of this is to provide a point of reference when comparing

new models. The technique applied was the Mean Squared Error (MSE) and the Root

Mean Squared Error (RMSE) as illustrated in the code below.

# Estimate model performance

trainScore = model.evaluate(trainX, trainY, verbose=0)
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percTr = (1000.0-(math.sqrt(trainScore))) /10 print('Train Score: %.2f MSE

(%.2f RMSE) Accuracy %.2f % %' % (trainScore, math.sqrt(trainScore),

percTr))
Finally, predictions were generated using the model for both the train and test datasets
to get a visual indication of the skill of the model. Once prepared, the results were
plotted, showing the original dataset in figure 2, predictions on training and test sets in
figure 3 and figure 4 respectively. Subsequently the combined data is shown in figure 5
below. The code that produces these statistical results is shown below

testScore = model.evaluate(testX, testY, verbose=0) percTs = (1000.0-

(math.sqrt(testScore))) /10 print('Test Score: %.2f MSE (%.2f RMSE) Accuracy

%.2f % %' % (testScore, math.sqrt(testScore), percTs))

# generate predictions for training trainPredict =

model.predict(trainX) testPredict = model.predict(testX)

# shift train predictions for plotting trainPredictPlot =
numpy.empty_like(dataset) trainPredictPlot[;, :] = numpy.nan

trainPredictPlot[look_back:len(trainPredict)+look_b ack, :] = trainPredict

# shift test predictions for plotting testPredictPlot =
numpy.empty_like(dataset) testPredictPlot[:, ] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:1 en(dataset)-1, :] =
testPredict

# plot Combined Graphs
plt4.plot(dataset, color="green",
label="dataset") plt4.plot(trainPredictPlot, color="blue", label="train")

plt4.plot(testPredictPlot, label="test", color="red")
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plt4.title("Combined Graphs", color="magenta") plt4.xlabel("months",

color="blue") plt4.ylabel("passengers in '000s",
color="green") plt4.legend()
plt4.show()

Results and Analysis

The extract of five rows of summary statistics based on the 300 epochs as well as the

MSE and RMSE values are indicated below:

Epoch 296/300

92/92 [========- 0s 544us/step - loss:

500.0288 Epoch 297/300

92/92 [========- (s 544us/step - loss: 533.4240 Epoch 298 /300
92/92 [======= (s 544us/step - loss: 504.7706 Epoch 299/300
92/92 [======== (s 489us/step - loss: 505.2075 Epoch 300/300

92/92 [======== ()s 544us/step - loss: 498.6430

Train Score: 487.92 MSE (22.09 RMSE) Acc: 97.79 %
Test Score: 2135.39 MSE (46.21 RMSE) Acc: 95.38 %

600 { —— dataset

o 20 40 60 80 100 120 140
months

Figure 2: Baseline Data (Source: Author)
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Predictions on Training Set

— ftrain

passengers in '000s

Figure 3: Training Set Predictions (Source: Author)

Predictions on Testing Set

— test

passengers in '000s

Figure 4: Testing Set Prediction (Source: Author)

Combined Graphs

- dataset
—rain
e -

300

200

100

Figure 5: Combined Predictions (Source: Author)

Conclusion

In this research, the study has demonstrated the applicability of a typical neural network
with parameter tuning to the problem of sequence data modeling. It is clear from the

results above that it performs well on both the training and the testing datasets with

minimal error rates. It is therefore imperative to conclude that basic neural networks
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such as MLP can perform equally as well as advanced neural networks such as RNNs,
CNNs, Boltzman Machines among others with careful fine tuning, optimization,

parameter search and pre- processing steps.

Recommendations

This study may be improved by 1) comparative analysis with other neural models 2)
experimentation with different training algorithms beyond adaptive moment (ADAM)
3) automatic hyper-parameter search using grid search procedures 4) experimentation
with different window sizes and 5) considering additional tests on varied time variant

data sets.
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